Search results

Search for "magnetic tissue engineering" in Full Text gives 1 result(s) in Beilstein Journal of Nanotechnology.

Wet-spinning of magneto-responsive helical chitosan microfibers

  • Dorothea Brüggemann,
  • Johanna Michel,
  • Naiana Suter,
  • Matheus Grande de Aguiar and
  • Michael Maas

Beilstein J. Nanotechnol. 2020, 11, 991–999, doi:10.3762/bjnano.11.83

Graphical Abstract
  • feedstock solution and winding the emerging fiber around a rotating magnetic collector needle upon coagulation. In summary, our helical chitosan microfibers are very attractive for future use in magnetic tissue engineering or for the development of biocompatible actuator systems. Keywords: biocompatible
  • actuators; chitosan fibers; helical fibers; magnetic tissue engineering; mechanical properties; wet-spinning; Introduction Helical fibrous structures are ubiquitous in nature and are found at virtually every length scale. A few examples are the structural motifs in proteins and DNA at the molecular level
  • cell behavior in vivo by applying external stimuli [41][42]. Emerging fields, such as magnetic tissue engineering, which uses magnetic levitation to control cell growth, would greatly benefit from the use of magnetic scaffolds since these would replace the need for treating the cells with magnetic iron
PDF
Album
Supp Info
Full Research Paper
Published 07 Jul 2020
Other Beilstein-Institut Open Science Activities